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Abstract
Computer simulation is an essential tool in the analysis of DNA sequence variation for mapping events of recent
adaptive evolution in the genome.Various simulation methods are employed to predict the signature of selection in
sequence variation. The most informative and efficient method currently in use is coalescent simulation. However,
this method is limited to simple models of directional selection.Whole-population forward-in-time simulations are
the alternative to coalescent simulations for more complex models. The notorious problem of excessive computa-
tional cost in forward-in-time simulations can be overcome by various simplifying amendments.Overall, the success
of simulations depends on the creative application of some population genetic theory to the simulation algorithm.

Keywords: selective sweep; polymorphism; coalescent simulation; forward-in-time simulation; adaptive evolution;
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Significant advances in evolutionary/population

genetic theory during the last two decades have

been essential for the successful computational

inference of functional genomic elements from

DNA sequence variation. Identifying the genomic

locations which underwent recent adaptive changes,

a procedure known as ‘hitchhiking mapping’ [1–3]

(Table 1), is one of the most important applications

of a classical population genetic principle. If a certain

allele produces an advantageous phenotype and

spreads quickly through the population, the DNA

sequence linked to the advantageous allele also

increases to high frequency and experiences a loss

of pre-existing polymorphism near the advantageous

allele. This sudden local reduction of variation is

called the ‘hitchhiking effect’ of the beneficial allele

or a ‘selective sweep’ [4–6]. Screens of genome

variability data revealed a large number of clear

cases of selective sweeps (for reviews see [7–9]), and

frequent positive selection is now considered a major

determinant of the amount and pattern of DNA

sequence polymorphism in natural populations

[10, 11]. The detection of local selective sweeps is

important not only in evolutionary biology but also

in various other fields, for instance in medicine and

agriculture. Prominent examples where hitchhiking

mapping has successfully been applied in the past

include the evolution of drug resistance at pfcrt
and dhps in the malaria parasite Plasmodium falciparum
[12, 13] and insecticide resistance at Cyp6g1 in

Drosophila simulans [14]. In domesticated plant and

animal species, selective sweeps are used to identify

genes that were under recent artificial selection

for agronomic traits (e.g. branching pattern, seed

morphology in maize [3, 15, 16] or milk yield and

composition in cattle [17]).

Clear patterns of selective sweeps are observed

if new beneficial mutations with large selective
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advantages occurred and became fixed in the

population very recently. However, under various

biological conditions, directional selection may occur

with moderate strength or in a manner that generates

a less obvious signature of genetic hitchhiking.

For example, a less severe reduction of variation is

expected if directional selection acts on a pre-existing

variant, rather than on a new mutation, that was

neutral or even slightly deleterious before a change

in environmental conditions rendered the variant

beneficial [18–20]. This scenario has been termed

‘soft sweep’ or ‘sweep from standing variation’ [19].

Examples for soft sweeps have recently been docu-

mented for instance for wheat [21] (a soft sweep near

a gene affecting plant height) and P. falciparum [22]

(a soft sweep near pfmdr1 associated with multi-drug

resistance). However, if the signature of selection is

weak, it is very difficult to distinguish it from the

inherent background noise in local polymorphism

patterns (Figure 2A). This noise can be substantial

even under simple, yet realistic, demographic scena-

rios [23–25]. For instance, admixture of subpopu-

lations, recent population bottlenecks or alternating

phases of population size reduction and expansion

can severely confound genetic and demographic

signals in the polymorphism pattern. The mathe-

matical theory for filtering the correct signature of

selective sweeps from the noise is difficult to develop

under general biological conditions (but see [26] for

some recent progress on properties of sample statistics

under general demographic models). Currently,

the most important approach to model the pattern

Table 1: Glossary

Term Explanation

Allele frequency spectrum The distribution of polymorphisms which occur in given numbers of copies in the sample.
Ancestral recombination graph Away to represent and model recombination events in a coalescent tree. A recombination event corresponds

to a split of a lineage (when looking backward in time), where the ‘chromosome’ or the currently considered
segment is split into a left and right subsegment. From this event onward (i.e. further backward in time) the
two sub-segments have their own evolutionary history.

Balancing selection A form of natural or artificial selection that favors the long-term maintenance of polymorphisms, of multiple
alleles or haplotypes

Coalescent simulation A method of simulating the genetic variability observable in a sample of genes or ‘chromosomes’.
The coalescent is a binary tree where nodes represent the merger of ancestral lineages (i.e. edges, the length
of which is proportional to time). Mutations occur according to a Poisson distribution ‘along the edges’. Any
mutational event changes the ground state (wild-type allele) of some new site in all chromosomes which
belong to the subtree under the current edge.

Demography Generic term referring to any change of population size or population structure (panmictic or subpopulations
with or without migration) in the evolutionary history of a population or species.

Directional selection A form of natural or artificial selection that favors a single allele, haplotype or genotype.
Forward-in-time simulation Type of computer simulation where the simulation runs from one (historical) generation to the next in natural

direction of time
Generalized coalescent Coalescent with nodes of degree k � 3.
Heterozygosity The probability that a pair of homologous alleles is nonidentical (neither by descent nor by state).
Hitchhiking mapping Procedure by which the mutations which are causative for an adaptive phenotypic change are mapped to

specific regions in the genome by examining features of the chromosomal profile of genetic diversity.
Linkage disequilibrium The nonrandom association of alleles at two (or more) linked loci.
Random binary tree A directed, acyclic graph with vertices of degree three. Randomness refers to the random merger of edges

(or arbitrary labeling).
Recessive beneficial mutation In diploid organisms: the mutation has a selective advantage only if it occurs in homozygous state
Selective sweep The rapid fixation of an advantageous allele in a population and the concomitant reduction of genetic diversity.
Soft sweep Selective sweep from standing variation; i.e. the advantageous allele is not introduced as a single copy at the

onset of the sweep but present in multiple copies.
Tajima’s D A summary statistic based on the number of polymorphisms observable in a sample of (homologous)

sequences and the average number of differences in pairwise comparisons from this sample. Under neutrality
and constant population size this statistic is expected to be zero. Deviations from zero are expected under
nonneutral evolution and/or demographic changes.

Time reversibility Property of many quantities occurring in evolutionary studies. In particular, equilibria, for instance the
mutation-drift equilibrium, in neutrally evolving populations can be obtained by considering the evolutionary
process forward in time or backward in time.

Wright^Fisher model Mathematical model to describe the change of allele frequencies from one generation to the next.Typical
evolutionary forces which change allele frequencies include selection, mutation and genetic drift.While the
change in allele frequency induced by the former two is modeled deterministically, the change due to drift
is modeled by binomial (in case of two alleles) or multinomial (in case of multiple alleles) sampling.
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of selective sweeps is by computer simulation. In this

article, we review different methods to simulate

genetic data under various models of directional

selection. These computer simulations are central for

obtaining the distributions of the statistics, which are

used for genome scans for positive selection and

which are the basis for all statistical tests to identify

candidate sites of selection. There can be many dif-

ferent computational strategies to achieve a goal.

We will discuss how population genetic theory

can help to design an efficient simulation strategy

which is appropriate for the biological question

under consideration.

COALESCENT SIMULATION
Coalescent simulation is the most widely used

method for modeling patterns of selective sweeps.

The coalescent (for a more detailed introduction to

coalescent theory, see [27–29]) captures the evolu-

tionary history of a sample of DNA sequences rather

than of all sequences of a population. Since it is the

genealogical history of the ancestors of the sampled

sequences that matters for building summary statis-

tics, one can often avoid reconstructing the evolu-

tionary history of all individuals of a population.

A coalescent simulation is conducted backward in

time according to the probabilities of coalescence

(two separate lineages find a common ancestor;

Figure 1) or recombination (a lineage is split into

two parental sequences) under a particular popula-

tion genetic model. Once the genealogy of sampled

sequences is constructed, mutations are placed

(usually modeled as a Poisson process with rate �
representing the per generation mutation rate) along

the lineages to generate polymorphic sites [29].

The coalescent process without recombination was

first described by Kingman [30] as an approximation

to the genealogical process in simple neutral models

of reproduction, such as the Wright–Fisher model.

The simulation of this process is extremely time

efficient because it considers only the lineages which

are ancestral to the sample and skips ‘un-interesting’

generations by a continuous-time approximation of

the underlying discrete process (Table 2, row 1). The

size of a sample is usually much smaller than that of

the entire population. While Kingman’s coalescent is

represented as random binary tree, the coalescent

with recombination is represented by the ancestral

recombination graph of Griffiths and Marjoram [31].

Constructing an ancestral recombination graph is

straightforward and, as long as a single locus or a

small genomic region is simulated, the algorithm is

fast enough to be practical for exploring an otherwise

wide-parameter space. However, it becomes com-

putationally demanding for large genomic regions

since the number of edges to be tracked increases

exponentially with increasing recombination rate.

Modifications of the standard coalescent to efficiently

simulate a large number of recombination events

have been designed by McVean and Cardin [32] and

Marjoram and Wall [33]. Essentially, their algorithms

ignore a class of rare recombination events which

would have no or little effect on the sample haplo-

types. Keeping the memory demand limited is

achieved by updating a previously generated geneal-

ogy, rather than constructing it de novo, when walk-

ing along the sequences. For large genomic regions

and/or for very large sample sizes an additional

problem may arise: the probability that multiple

coalescent events happen at the same time may not

be negligible and thus a fundamental assumption of

the standard coalescent may be violated. To solve

this problem one may resort to coalescent simula-

tions with discrete generations (Table 2, rows 2, 3)—

unfortunately only at the expense of computational

efficiency. More advanced theory [34] considering

generalized coalescents (for instance, so-called l-

coalescents) may come to help here.

For simulating a selective sweep (Table 2, rows 4,

5), one has to model coalescence and recombination

events in a population which is subdivided into two

genetic backgrounds: one class of lineages is linked

to the beneficial allele and the other class is linked to

the wild-type allele (Figure 1). Given the frequencies

of the two alleles, beneficial and wild-type, the

genealogical history is considered separately for each

allelic class. At a linked neutral locus, lineages

are allowed to move between the two classes by

recombination. This idea of a genealogy conditional

on a sequence belonging to either one of two allelic

classes was first described by Hudson and Kaplan [35]

and applied to modeling of selective sweeps by

Kaplan et al. [5]. Braverman et al. [36] first simulated

the genealogy under selective sweeps using the two-

locus theory of coalescence and recombination [5].

Here, the first locus is under directional selection

and the other locus carries only neutral alleles. This

two-locus simulation, in which the neutral locus

is represented as a nonrecombining sequence, is

sufficient to generate the unique signature of selec-

tive sweeps in the form of a skewed allele frequency
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spectrum, i.e. an excess of mutant alleles in very

low or high frequency in the sample [37]. Other

important signatures of selective sweeps are a

nonuniform distribution of polymorphic sites and

an excess of linkage disequilibrium in the chromo-

somal region affected by the beneficial mutation

[38, 39]. To detect these signatures, the genealogical

correlation among multiple polymorphic sites, which

critically depends on the recombination rate, should

be correctly obtained. Later studies thus allowed

recombination within the neutral locus under con-

sideration (e.g. [40]). In particular, Kim and Stephan

[41] implemented the algorithm of coalescent with

recombination in which the selected site is located in

the middle of a chromosome with arbitrarily many

neutral loci around the selected site (Table 2, row 5).

This allowed the assessment of the stochastic pattern

of local reduction of variation and associated skew

of frequency spectrum and linkage disequilibrium.

In these simulations of selective sweeps, the

trajectory of a beneficial mutation, which divides

the lineages in the population into two allelic classes

in a time-dependent manner, was computed before-

hand using the deterministic dynamics of an allele

under directional selection. However, there is a

drawback with this procedure: the deterministic

trajectory of a beneficial mutation is quite different

from the true stochastic trajectory that is subject

A

B

Figure 1: Gene genealogy under a model of strong
directional selection and the corresponding pattern of
sequence polymorphism, for a population of 20 haploid
individuals (homologous sequences; shown as circles)
which reproduce in discrete generations. (A) Each line
in the graph represents one generation. Gray arrows
indicate the inheritance of alleles at the locus under
directional selection. Filled (empty) circles represent
individuals carrying the beneficial (ancestral) allele at
the selected locus. Due to strong directional selection,
the beneficial allele quickly reaches fixation in the popu-
lation, indicated by the presence of only filled circles in
the lower third of the figure.Three sequences (q, r and
s) were sampled in the current generation (bottom).
The genealogy at the selected locus, traced backward-
in-time from the sampled chromosomes, is shown by
dotted lines. The genealogy at a neutral locus that
is partially linked to the selected locus is shown by
solid lines. Genealogies at the two loci are different
due to recombination events (indicated by diamonds).
Coalescentevents are indicatedby squares.Therecombi-
nation event in the ancestral sequence (l) allows the
neutral lineage of sequence s to escape the coalescence
tree of the selected locus. Coalescent simulations
create such genealogies by generating only the times
of coalescence or recombination according to probabilis-
tic models, without specifying the reproduction of the

entire population at each generation. Genealogies at
different loci merge to form an ancestral recombination
graph. Therefore, squares and diamonds above corre-
spond to nodes in the ancestral recombination graph.
Lightning symbols along the lineages indicate mutation
events that produce polymorphism in the sampled
sequences. Empty and gray lightning represent mutation
events which happened in earlier generations than the
ones shown; however, they are still visible as polymor-
phisms in the sampled sequences q, r and s that are
inherited along the indicated lineages. Black lightning
represent mutation events which happened during
the shown time interval. (B) Sketch of a possible course
of evolutionary events leading to the observable poly-
morphisms in a present day sample (sequences q, r and
s). The states of ancestral sequences at selected time
points [sequences a to p indicated in (A)] are shown.
Filled gray bars indicate the sequence on which the
beneficial mutation first occurred (gray circle on
sequence a) and its descendants. Empty bars represent
DNA segments which recombined with the beneficial
allele. A dashed outline of the empty bars indicates
ancestral DNA segments, acquired by recombination,
that do not leave descendants in the present-day sample.
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to near-neutral genetic drift at the early stage when

the frequency is low. Conditional on its eventual

fixation, the stochastic trajectory of a beneficial allele

relative to the deterministic one is shifted upward by

�1/(2s) on average, where s is the selective advan-

tage of the beneficial mutation [42, 43]. This dif-

ference significantly changes the outcome of the

hitchhiking effect [4, 43, 44], as it shortens the initial

phase of the selective sweep and therefore leaves

less opportunity for recombination. Thus, with the

stochastic trajectory the effect of hitchhiking is more

drastic than with the deterministic trajectory. There

have been three ways of modeling this property.

First, the deterministic trajectory may be modified

to mimic the stochastic effect. For example, one may

assume that the frequency of the beneficial allele

increases immediately from one to 1/(2s) copies

and then grows deterministically. This ad hoc solution

rectifies most of the error caused by using the

complete deterministic trajectory in the initial phase

[39]. Recently, Eriksson et al. [45] obtained a more

accurate deterministic approximation to the stochas-

tic trajectory. Second, one may specify the two allelic

classes entirely by a stochastic (i.e. simulated) tra-

jectory. One can use a forward-in-time simulation

(Table 2, rows 8, 9) of directional selection to

generate the trajectory of the beneficial allele and

then use the recorded trajectory backward-in-time

during the coalescent simulation. This procedure has

been applied by Innan and Kim [18] and Teshima

and Przeworski [46]. Alternatively, and because of

time reversibility [47], the stochastic trajectory can

be simulated backward-in-time and simultaneously

with the construction of the ancestral recombination

graph [48]. Finally, the genealogy under the hitch-

hiking effect can be approximated by a Yule process,

a stochastic process quite different from the coales-

cent [49]. This method has the advantage that it is

Table 2: Selected software resources

No. � Name Purpose Ref.

1 � ms Backward in time (coalescent) simulation of the segregating sites of a sample of haplotypes as
in Figure 1B; allowing for recombination, gene conversion, migration among subpopulations and
a variety of demographic histories. Although this program does not include any models of
directional selection, simulations generated with ms are often used to produce a background
distribution under neutral evolution of the statistics of interest.

[76]

2 � GENOME Coalescent-based approach to simulate whole-genome data. In addition to features of standard
coalescent simulators, the program allows for recombination rates to vary along the genome and
for flexible population histories. No simulation of models of selection.

[77]

3 � SimCoal
SimCoal2

Coalescent simulation with discrete generations; accommodates multiple loci in large genomic
regions and complex population history. No simulation of models of selection.

[78]

4 � SelSim Simulation of DNA polymorphism data for a recombining region within which a single bi-allelic
site has experienced natural selection. SelSim allows simulation from either a fully stochastic
model of, or deterministic approximations to, natural selection within a coalescent framework.

[79]

5 � ssw Simulate selective sweeps following the model of refs [41] and [80]. Recombination of sequences
via crossing-over and/or gene conversion is implemented.Versions simulating a stochastic
trajectory of the focal allele and simple demographic changes are available.

[81]

6 � mlcoalsim Coalescent simulation to generate samples, similar to ms and ssw, with added features such as
built-in statistical tests for output.

[82]

7 þ simuPOP Forward-in-time population genetics simulation environment. simuPOP provides scripts that
perform simulations of basic population genetic models and that can also generate datasets
under more complex evolutionary scenarios, except models of selection.

[83, 84]

8 þ FPG FPG (for forward population genetic simulation) simulates a population of constant size that is
undergoing various evolutionary processes, including: mutation, recombination, natural selection
and migration.

[85]

9 þ ForSim Forward-in-time simulation program that allows users to define the number, lengths and location
of genes and chromosomes, the genetic contributions and interactions, environmental effects and
other conditions (number of populations, phenotype-based natural selection, gene flow and
mate choice).

[86]

10 þ EasyPOP An individual-based model that simulates neutral loci datasets under a very broad range of
conditions.

[87]

11 þ FREGENE Individual-based forward-in-time simulation that uses the rescaling method to reduce the
computational burden. Directional and balancing selection are allowed at chosen loci.Various
models of demography and recombination can be specified.

[88]

(�) indicates the type of simulation, backward-in-time (�) or forward-in-time (þ).
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better tractable analytically and it does not require

any explicit assumption or simulation of evolutionary

dynamics at the focal locus.

One should also be aware of a further principle

limitation for coalescent simulations of selective

sweeps. The continuous time approximation of the

discrete coalescent implicitly requires that an allele

may leave at most two descendants or, equivalently,

that a lineage may at most bifurcate per unit time.

Not only for large genomic regions and large sample

sizes mentioned above, but also for very strong

selection this assumption may be violated. Therefore,

the result of a simulation with large s (s close to one

or larger) cannot be validated using the classical

mathematical theory, which is a crucial step for error

checking. While non-standard coalescent trees under

strong selective sweeps are not implemented in

currently available simulation software, theoretical

framework to treat generalized coalescent trees [34,

50] (trees with ‘multiple collisions’) and trees with

simultaneous multiple collisions [51] has been

developed.

The use of simulated trajectories in the simulation

of genetic hitchhiking is important not only for

obtaining the accurate patterns of genetic variation

but also for enabling the simulation of other complex

models of directional selection, such as soft sweeps

from a previously neutral allele [18, 20] and selection

on recessive beneficial mutations [46]. In both cases,

the frequency of the allele that divides the popula-

tion into two genetic backgrounds (we may call it

the ‘focal’ allele) experiences an extended period of

neutral fluctuation before being lifted to fixation by

positive selection. This approach of precomputing

the trajectory of the focal allele and then building a

sample genealogy conditional on two genetic back-

grounds may also be used to simulate the genetic data

under balancing or periodically oscillating selection.

One should note, however, that applying this

method to models of selection that do not assume

codominance of selected alleles (e.g. recessive bene-

ficial mutations or balancing selection due to over-

dominance) introduces a subtle theoretical problem.

For example, if the relative fitnesses of genotypes

A1A1, A1A2 and A2A2 at the focal locus are 1þs,
1 and 1, respectively, and if all three genotypes are

present in the population, A1 lineages in homo-

zygotes leave more descendants than A1 lineages in

the heterozygotes. It thus violates the assumption

that lineages evolve neutrally within each allelic class.

A similar problem arises with over-dominance.

As the chromosomes carrying the same allele have

unequal fitness, the effective number of chromo-

somes becomes smaller than the actual count, thus

increasing the rate of coalescence within the allelic

class. However, this increase will be only on the

order of the selection coefficient s. Further studies

are needed to evaluate the importance of this effect.

Furthermore, coalescent simulations for selective

sweeps described above use the tacit assumption that

the two genetic backgrounds at a given time

originated from a single mutational event at the

focal allele. Under reasonable biological scenarios

this assumption might be violated. Namely, while

the polymorphism at the focal locus, for example,

with alleles A1 and A2, is maintained, some copies of

A1 may mutate to A2, or vice versa. Then, a linked

neutral lineage may switch genetic backgrounds (i.e.

between A1 and A2) not only by recombination but

also by mutation at the focal locus. Pennings and

Hermisson [52, 53] showed that the possibility of

the latter event cannot be ignored, even if strong

selection produces a short trajectory of a beneficial

mutation, as long as the mutation rate scaled by

population size (4N�) is high. If such switching due

to mutation (‘soft sweeps II’ [52]) happens, local

variation is not completely wiped out. Therefore,

it is recommended that, in all simulations of selec-

tive sweeps using the coalescent with recombination

algorithm (i.e. simulations based on the model of

Kaplan etal. [5]), extra terms be added to describe the

transition of neutral lineages across genetic back-

grounds due to mutational events at the focal locus.

Recent research focuses on identifying the pattern

of selective sweeps under complex demography. A

simple modification to introduce stepwise changes in

population size before or after a selective sweep is

possible by changing the rate of coalescence, while

holding the rate of recombination constant [54].

The coalescent simulation of selective sweeps

under a more complicated demography during

plant domestication is described by Innan and Kim

[55]. Developing an adequate coalescent model of

selective sweeps under complex demographies, in

particular if sweeps occur across subdivided popula-

tions, is very difficult because a given neutral lineage

not only has to move between genetic backgrounds

by recombination but also between sub-populations

by migration. It is not clear whether these two

events can be modeled to occur independently. The

assumption of time reversibility of the evolutionary

process, which underlies all coalescent models, may
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be violated in such cases. This is in contrast to the

possibility of simulating diverse scenarios of complex

demography under neutral evolution [56] (Table 2,

rows 1–3, 6).

Figure 2 shows typical patterns of genetic

variation with and without directional selection

along a recombining chromosome simulated under

the models of plant domestication in [55]. By chance

the level of variability (y-axis in Figure 2A) may

be reduced in certain regions (x-axis) even under

neutral evolution. This poses the problem of dis-

tinguishing random genetic drift and directional

selection as the possible causes for the reduction of

variability. Close examination of the neutral versus

selective patterns reveals important differences.

One indicator is given by the frequency spectrum.

At evolutionary equilibrium, the frequencies of

derived (recently mutated) alleles at neutral loci are

usually lower than those of ancestral (wild-type)

alleles. In contrast, as a result of a selective sweep,

frequencies of derived alleles increase transiently

[37]. This change in the allele frequency distribution

is called a skew in the frequency spectrum and

quantified by the difference between the statistics

�H (Fay and Wu’s estimator of 4N�) and � (Tajima’s

estimator of 4N�). The former is a variability mea-

sure which is based on the derived allele frequencies,

the latter is the expected heterozygosity and ignores

whether an allele is derived or ancestral. Figure 2

shows that the difference �H�� is much larger

in the area nearby the pocket of reduced variation

caused by selection (Figure 2B) than without selec-

tion (Figure 2A). Note, that in the example shown

in Figure 2B, the skew of variability is asymmetric,

by chance, around the site which gave rise to the

selective sweep. Therefore, observing such asymme-

try in actual data would still be compatible with a

single selective sweep and even with a constant

recombination rate per site.

ALTERNATIVESTOTHE
COALESCENT: FORWARD-IN-TIME
SIMULATION
Coalescent simulation has been widely used in many

areas of evolutionary studies because of its computa-

tional efficiency and direct correspondence between

simulation results and observations in sampled DNA

sequences. However, coalescent simulations are

not suited for all evolutionary processes involving

selection. In practice, the simulation of selective

sweeps is restricted to models of directional selection

in which only one locus has segregating alleles under

selection at any given time. More generally, if n
loci are polymorphic with selected alleles, a linked

A

B

Figure 2: Variability profile along a sequence of 20kb
produced by coalescent simulation under the demo-
graphic model of [55] (a population with N¼104 indivi-
duals undergoes a bottleneck with 3000 individuals that
starts 600 generations ago and lasts for 200 generations.
At the start of bottleneck, directional selection occurs
on a beneficial mutation with s¼ 0.05 and the starting
frequency of 0.001. Scaled recombination and mutation
rates are 4Nr¼ 0.04 and 4N�¼ 0.005, respectively, per
nucleotide).Variation is measured by � (solid curve) and
�H (gray curve) and with a sliding window of 1kb (A)
without selection (B) with selection. The filled triangle
at10kb indicates the position of the site where a benefi-
cial mutation triggered a selective sweep. At first sight,
both measures show a quite irregular pattern in both
scenarios. However, they become distinguishable with
the help of derived quantities, for instance the difference
�H��, which is much larger under selection than under
neutrality. The distributions of such statistics can be
obtained by coalescent simulations and then be used to
define a significance level for rejecting thenull hypothesis
of neutral evolution.
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neutral lineage may belong to any of potentially 2n

genetic backgrounds. It is possible to ‘sample’ the

joint trajectory of those beneficial alleles by forward

simulation and use it to specify the change of mul-

tiple allelic classes during the coalescent simulation.

However, if two or more loci under selection are

partially linked, the transition of a neutral lineage,

located between the selected loci, across genetic

backgrounds by recombination may not be deter-

mined separately during the construction of the

genealogy, because one cannot assume that recom-

bination between the neutral locus and one of

the selected loci does not affect the trajectory

of beneficial alleles. Note that this is in contrast

to one locus selective sweeps, where recombination

between neutral and selected loci can occur without

interfering with the process of directional selection.

This problem becomes more serious when beneficial

mutations at different loci interact nonadditively.

A similar problem occurs when selective sweeps

occur in a subdivided population. As mentioned

above, the migration of neutral lineages and the

spread of a beneficial mutation across subpopulations

may not be independent in this case. There can

be many other biological complexities that make

coalescent simulations impossible or impractical.

Forward-in-time simulations (Table 2, rows 7–9)

that reconstruct the evolutionary process of the

entire population can overcome such limits imposed

on the coalescent simulation. In principle, any

complex model of reproduction can be simulated

forward in time. However, there are also drawbacks

of this procedure, biological as well as technical.

As to the former, forward-in-time simulations have

to be started with certain initial conditions. For

instance, one has to make an assumption about the

neutral equilibrium level of variation before a

selective sweep occurs. Recent experimental results

in Escherichia coli [57] cast doubt on the appropriate-

ness of the concept of a neutral genetic background

in which an adaptive mutation can arise. Lenski and

coworkers have demonstrated that an adaptive Citþ

variant in an E. coli population could originate only

in a certain genetic background, which they called

‘potentiating’, and which is historically contingent.

The technical drawback of forward-in-time simu-

lations is the severely increased computational cost.

Even with the power of current personal computers,

simulations at the scale of a real natural population,

i.e. simulating in silico the reproduction of all

individuals, are still impractical. Not only memory

but also processing speed is limiting. For example, it

takes O(N) generations to observe an appreciable

shift in allele frequency by neutral drift if there are

N individuals in the population. Since the simulation

time to complete the reproduction of one generation

is proportional to N, the total simulation time for

observing a desired pattern of variation increases

proportional to N2. However, there are ways to

circumvent at least some of the problems incurred

by whole-population forward-in-time simulations

while still generating meaningful results. For exam-

ple, [58] developed an algorithm for exact forward

simulation that reduces memory usage and run time

by generating short-term genealogical information,

by which nonancestral chromosomes are identified

and the manipulation of them is skipped. In other

methods, population genetic theory plays an essential

role for simplification. In the following, we will

describe three such methods in more detail.

Simulationwith scaled parameters
The time scale of evolutionary processes in popu-

lation genetics depends on population size. As an

important consequence, the magnitude of other

parameters, such as mutation rate, selection coeffi-

cient, migration rate or recombination rate, scales

with population size. The reason for this is that any

evolutionary force that changes allele or haplotype

frequencies exerts its effect relative to the scale of

random genetic drift, which is O(1/N). For example,

the effect of a single recent selective sweep on the

reduction of neutral variation depends on the

product Ns and the ratio of Nr and Ns, where s is

the selection coefficient of the beneficial allele and

r is the recombination rate, per generation, between

the neutral and selected loci [39, 59]. Thus, one

expects identical effects in a population with

s¼ 10�3, r¼ 10�4 and N¼ 106 or with s¼ 10�1,

r¼ 10�2 and N¼ 104. In addition, since the reduc-

tion of population size changes the time scale by the

same factor, the effect will be achieved in less time.

Therefore, a simulation would be much faster using

the latter parameter values. This approach—dividing

N by some constant l (e.g. l¼ 10), but maintaining

the product of Nx, where x is another parameter—is

widely used in forward-in-time simulations and

implemented, for instance, in the FREGENE

package [60] (Table 2, row 11) However, there are

a number of potential problems. There might be

unrecognized population genetic effects that depend

on the absolute, not the scaled, value of parameters.
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The fixation probability of a beneficial mutation,

which depends to first order on s but not on Ns,
is one example. Furthermore, expressions involving

higher order terms (e.g. the square of the recom-

bination rate for double recombination events)

are usually neglected for the sake of simplification

of analytical treatments. It should also be noted that

x in Nx cannot be increased indefinitely. For

example, to simulate a sweep with Ns¼ 1000, and

reducing N below 10 000 means s> 0.1. Most

analytic solutions for directional selection are derived

by assuming that s is much smaller than one. The

diffusion approximation of the discrete Wright–

Fisher model and, as mentioned above, the con-

tinuous time approximation of the discrete coalescent

require that an allele leaves at most two descendants

per unit time—an assumption which may be violated

when selection is strong. Tachida [61] and Comeron

and Kreitman [62] also pointed out that in forward

simulations the sample size must be small compared

to the population size. This is essential to obtain

correct sample statistics that are sensitive to the size of

the sample (such as Tajima’s D) which is extracted

from the whole population. Comeron and Kreitman

[62] showed that forward simulations may generate

a considerable degree of error when N becomes

too small, while Ns is held constant.

Frequency-based simulation
If the biological process can be simplified into a two-

or three-locus model of natural selection and the

expected changes of genotype frequencies between

generations can be correctly described by mathema-

tical formulae, one may examine the distribution of

(neutral) allele frequencies simply by simulating the

numerical changes of allele frequencies forward-in-

time. In many biological scenarios, it is straightfor-

ward to obtain equations for frequency changes in

one generation under the action of selection,

mutation, recombination and migration (e.g. [63]).

The stochastic change of allele frequencies due to

random sampling at each generation (for example,

the Wright–Fisher model) is also easily simulated

using binomial random number generators. This

simulation method has been widely used since the

1960s [64, 65], stimulated by the elaborate treatment

of the interplay of genetic drift with other evolu-

tionary forces as a diffusion process [66, 67]. It

still finds application in more recent studies (e.g.

[68–70]). One of its advantages is that it is much

faster than the individual-based forward-in-time

simulation. By observing the allele frequency

change in an equilibrium process over long periods

or repeating short independent runs (thus sampling

different allele trajectories) in a nonequilibrium

process, both the long-term average and transient

distribution of allele frequencies can be obtained

[71]. One disadvantage of this simulation method

is that the evolutionary dynamics of only a few (up

to three say) loci can be treated reasonably well.

Therefore, the aspects of genetic variation that

depend on the occurrence of multiple polymorphic

loci in a sample of finite-length sequences, such as

the sample frequency spectrum, Tajima’s D statistic

or haplotype structures, may not be examined in

this approach. Despite this disadvantage, it is a still

underutilized, yet important, tool of investigation

because it is simple and the general pattern of vari-

ation under models of selection or other evolution-

ary forces is easily obtained. In particular, this

simulation approach will be very useful for analyzing

the emerging large-scale data sets of polymorphisms

which are spread across different whole chromo-

somes and therefore represent independent evolu-

tionary outcomes. This situation directly corresponds

to the collection of independent runs of a frequency-

based simulation.

Whole-population forward simulation to
examine temporal coalescence
In other complex models of evolutionary changes,

per-generation changes in genotype/haplotype fre-

quencies may not be expressed by analytic solutions,

especially when the number of loci in the model

is large. In these situations, individual-based whole-

population simulation might be the only solution

(Table 2, rows 7–11). However, if a researcher is

interested in the effect of a recent evolutionary

change, such as a recent selective sweep in a genomic

region that had been in neutral equilibrium prior

to the time of change (tc), he or she may (i) assume

the well-known neutral distribution [72] of allele

frequencies at tc, and (ii) conduct the forward simu-

lation of the evolutionary change between time tc
and the present, and then combine (i) and (ii) to

produce the pattern of genetic variation at present.

This general principle leads to a simulation scheme,

described below, that is very efficient when the goal

of simulation is simply to examine the effect

of evolutionary parameters on summary statistics of

genetic variation, for instance on expected hetero-

zygosity �.
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Consider a population consisting of N chromo-

somes that reproduce in discrete generations follow-

ing the Wright–Fisher model. At the beginning of

the forward simulation, neutral alleles at each locus

on different chromosomes are individually marked

such that they can be distinguished from each other.

For example, at each locus one may assign the

‘ancestral number’ i to represent the neutral allele on

the i-th chromosome (i¼ 1,. . .,N). Suppose that

pij(t) is the frequency of the ancestral number i in

the population at generation t at the j-th locus.

At generation 0 (beginning of the simulation),

pij(0)¼ 1/N for all i and j. Then, pij(t) changes

during the simulation of the evolutionary model of

interest. For example, if the model assumes direc-

tional selection at many loci and the locus j is tightly

linked to one of the selected alleles, pij(t) is likely

to increase to a value much greater than 1/N if i
marks the chromosome with relatively higher fitness

(carrying more beneficial alleles), or reduce to zero

otherwise. When the simulation is stopped after T
generations, the level of genetic variation at the j-th
locus can be measured by the identity by descent. Let

�22j be the probability that two randomly chosen

alleles at locus j at time T have distinct ancestors at

time 0 (this is equivalent to p22 in [5]). Then,

�22j ¼ 1�
X2N

i¼1

p2
ijðTÞ:

�22j corresponds to the probability that two

randomly selected gene lineages do not coalesce

between time T and 0 (when time runs backward).

This quantity determines the expected heterozygos-

ity at present: if new mutations at neutral loci can

be ignored between time T and 0, two randomly

selected alleles at locus j are different only if the two

lineages do not coalesce between time T and 0 and if

the two ancestral alleles at time 0 are different (with

probability 4N�, where � is the mutation rate).

Therefore, the expected heterozygosity at locus j is

given by 4N��22j. Employing a similar logic, the

expected level of linkage disequilibrium between

two neutral loci can be obtained by tracking the

two-locus genealogy between time T and 0 and

then combining it with the equilibrium level of

linkage disequilibrium (the necessary mathematical

theory is given in [73]). This method of simulation is

fast enough to be practical for exploring numerous

parameter values, because any simulation run lasts

only T generations and summary statistic can be

obtained from the genealogical structure of the

whole population. These are much less variable than

the statistics based on the sample genealogy from

backward-in-time coalescent simulations and there-

fore also require less simulation runs. This approach

has also been used to examine the pattern of

variation after fixation of two overlapping selective

sweeps at closely linked sites [74] and of epistatically

linked beneficial alleles (T. Wiehe and Y. Kim,

manuscript in preparation).

CONCLUSION
In most population genetic studies that aim to infer

the evolutionary history of natural selection using

DNA sequence polymorphism, a coalescent simu-

lation, if possible, is the most effective tool of

investigation. Using the correct coalescent simula-

tion, an accurate description of the stochastic patterns

of variation in the sample can be obtained and thus

the proper statistical method for the inference can be

designed. Computational speed is also an important

advantage of coalescent simulations, especially when

considering the increasing use of simulations to analyze

whole-genome variability data. Simulations are also an

integral part of statistical inference, for example, in

Approximate Bayesian Computation [75].

However, coalescent simulations are adequate

only in the context of relatively simple evolutionary

models, such as directional selection at one locus

at any given time and in a not too complex demo-

graphical background. When considering more

complex evolutionary scenarios one is left with

whole-population forward-in-time simulation. This

method is generally much slower and much more

memory demanding than coalescent simulations.

Still, by creatively using results of population genetic

theory, forward simulations can be designed to

capture the desired evolutionary properties and to

generate patterns of variation at multiple loci with

reasonable speed.

Key Points
� Simulation of sequence evolution under directional selection

is essential for discovering genetic changes of functional
importance.

� Coalescent simulation is themost efficientmethod of generating
the correct stochastic patterns of polymorphism in a sample of
DNA sequences. However, its application is limited to simple
models of directional selection.

� Whole-population forward-in-time simulation is the alternative
to coalescent simulation for complex models. The notorious
problem of computational inefficiency can be overcome by using
modifications based on population genetic theory.
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